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Abstract
Transformer has been considered the dominating
neural architecture in NLP and CV, mostly under
a supervised setting. Recently, a similar surge of
using Transformers has appeared in the domain of
reinforcement learning (RL), but it is faced with
unique design choices and challenges brought by
the nature of RL. However, the evolution of Trans-
formers in RL has not yet been well unraveled.
Hence, in this paper, we seek to systematically
review motivations and progress on using Trans-
formers in RL, provide a taxonomy on existing
works, discuss each sub-field, and summarize fu-
ture prospects.

1 Introduction
Reinforcement learning (RL) provides a mathematical for-
malism for sequential decision-making. By utilizing RL, we
can acquire intelligent behaviors automatically. While RL
has provided a general framework for learning-based control,
the introduction of deep neural networks, as a way of func-
tion approximation with high capacity, is enabling significant
progress along a wide range of domains [Silver et al., 2016;
Vinyals et al., 2019; Ye et al., 2020a,b].

While the generality of deep reinforcement learning (DRL)
has achieved tremendous developments in recent years, the
issue of sample efficiency prevents its widespread use in real-
world applications. To address this issue, an effective mech-
anism is to introduce inductive bias into the DRL frame-
work. One important inductive bias in DRL is the choice
of function approximator architectures, such as the param-
eterization of neural networks for DRL agents. However,
the problem of choosing architectural designs in DRL has
remained less explored, when compared to efforts on archi-
tectural designs in supervised learning (SL). Most existing
works on architecture for RL are motivated by the success
of the (semi-)supervised learning community. For instance, a
common practice to deal with high-dimensional image-based
input in DRL is to introduce convolutional neural networks
(CNN) [LeCun et al., 1998; Mnih et al., 2015]; another com-
mon practice to deal with partial observability is to introduce

∗ Equal contribution; † Equal advising.

recurrent neural networks (RNN) [Hochreiter and Schmidhu-
ber, 1997; Hausknecht and Stone, 2015].

In recent years, the Transformer architecture [Vaswani et
al., 2017] has revolutionized the learning paradigm across a
wide range of SL tasks [Devlin et al., 2018; Dosovitskiy et
al., 2020; Dong et al., 2018] and demonstrated superior per-
formance over CNN and RNN. Among its notable benefits,
the Transformer architecture enables modeling long depen-
dencies and has excellent scalability [Khan et al., 2022]. In-
spired by the success of SL, there has been a surge of interest
in applying Transformers in reinforcement learning, with the
hope of carrying the benefits of Transformers to the RL field.

The use of Transformers in RL dates back to Zambaldi
et al. [2018b], where the self-attention mechanism is used
for relational reasoning over structured state representations.
Afterward, many researchers seek to apply self-attention for
representation learning to extract relations between entities
for better policy learning [Vinyals et al., 2019; Baker et al.,
2019]. Besides leveraging Transformers for state represen-
tation learning, prior works also use Transformers to cap-
ture multi-step temporal dependencies to deal with the issue
of partial observability [Parisotto et al., 2020; Parisotto and
Salakhutdinov, 2021]. More recently, offline RL [Levine et
al., 2020] has attracted attention due to its ability to lever-
age offline large-scale datasets. Motivated by offline RL, re-
cent efforts have shown that the Transformer architecture can
serve directly as a model for sequential decisions [Chen et al.,
2021; Janner et al., 2021] and generalize to multiple tasks and
domains [Lee et al., 2022; Carroll et al., 2022].

The purpose of this survey is to present the field of
Transformers in Reinforcement Learning, denoted as Trans-
formRL. Although Transformer has been considered as a
foundation model in most SL research at present [Devlin et
al., 2018; Dosovitskiy et al., 2020], it remains to be less ex-
plored in the RL community. In fact, compared with the SL
domain, using Transformers in RL as function approxima-
tors faces unique challenges. First, the training data of RL
agents is typically a function of the current policy, which in-
duces non-stationarity during learning a Transformer. Sec-
ond, existing RL algorithms are often highly sensitive to de-
sign choices in the training process, including network ar-
chitecture and capacity [Henderson et al., 2018]. Third,
Transformer-based architectures often suffer from high com-
putational and memory costs, making it expensive in both
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training and inference during the RL learning process. For
example, in the case of AI for video game-playing, the effi-
ciency of sample generation, which largely affects the train-
ing performance, depends on the computational cost of the
RL policy network and value network [Ye et al., 2020a;
Berner et al., 2019]. In this paper, we seek to provide a com-
prehensive overview of TransformRL, including a taxonomy
of current methods and the challenges. We also discuss future
perspectives, as we believe the field of TransformRL will play
an important role in unleashing the potential impact of rein-
forcement learning, and this survey could provide a starting
point for those looking to leverage its potential.

We structure the paper as follows. Section 2 covers back-
ground on RL and Transformers, followed by a brief intro-
duction on how these two are combined together. In Sec-
tion 3, we describe the evolution of network architecture in
RL and the challenges that prevent the Transformer architec-
ture from being widely explored in RL for a long time. In
Section 4, we provide a taxonomy of Transformers in RL and
discuss representative existing methods. Finally, we summa-
rize and point out potential future directions in Section 5.

2 Problem Scope
2.1 Reinforcement Learning
In general, Reinforcement Learning (RL) considers learn-
ing in a Markov Decision Process (MDP) M =
〈S,A, P, r, γ, ρ0〉, where S and A denote the state space and
action space respectively, P (s′|s, a) is the transition dynam-
ics, r(s, a) is the reward function, γ ∈ (0, 1) is the discount
factor, and ρ0 is the distribution of initial states. Typically,
RL aims to learn a policy π(a|s) to maximize the expected
discounted return J(π) = Eπ,P,ρ0 [

∑
t r(st, at)]. There are

many important topics in this area, for instance, meta RL,
multi-task RL, and multi-agent RL. In the following part, we
introduce several specific RL problems that are closely re-
lated to advances in Transformers in RL.

Offline RL. In offline RL [Levine et al., 2020], the agent
is not allowed to interact with the environment during train-
ing. Instead, it only has access to a static offline dataset
D = {(s, a, s′, r)} collected by arbitrary policies. With-
out exploration, modern offline RL approaches [Fujimoto et
al., 2019; Kumar et al., 2020; Yu et al., 2021b] constrain
the learned policy close to the data distribution, to avoid
out-of-distribution actions that may lead to overestimation.
Recently, in parallel with typical value-based methods, one
popular trend in offline RL is RL via Supervised Learn-
ing (RvS) [Emmons et al., 2021], which learns an outcome-
conditioned policy to yield desired behavior via SL.

Goal-conditioned RL. Goal-conditioned RL (GCRL) ex-
tends the standard RL problem to goal-augmented setting,
where the agent aims to learn a goal-conditioned policy
π(a|s, g) that can reach multiple goals. Prior works pro-
pose to use various techniques, such as hindsight rela-
beling [Andrychowicz et al., 2017], universal value func-
tion [Schaul et al., 2015], and self-imitation learning [Ghosh
et al., 2019], to improve the generalization and sample effi-
ciency of GCRL. GCRL is quite flexible as there are diverse

choices of goals. We refer readers to [Liu et al., 2022] for a
detailed discussion around this topic.

Model-based RL. In contrast to model-free RL which di-
rectly learns the policy and value functions, model-based RL
learns an auxiliary dynamic model of the environment. Such
a model can be directly used for planning algorithms [Schrit-
twieser et al., 2020], or it can be used as a generator to pro-
duce imaginary trajectories and enlarge the training data for
any model-free algorithm [Hafner et al., 2019]. Learning a
model is non-trivial, especially in large or partially observed
environments where we first need to construct the representa-
tion of the state. Some recent methods propose to use latent
dynamics [Hafner et al., 2019] or value models [Schrittwieser
et al., 2020] to address these challenges and improve the sam-
ple efficiency of RL.

2.2 Transformers

Transformer [Vaswani et al., 2017] is one of the most effec-
tive and scalable neural networks to model sequential data.
The key idea of Transformers is to incorporate self-attention
mechanism, which could capture dependencies within long
sequences in an efficient manner. Formally, given a sequen-
tial input with n tokens

{
xi ∈ Rd

}n
i=1

, where d is the em-
bedding dimension, the self-attention layer maps each token
xi to a query qi ∈ Rdq , a key ki ∈ Rdk , and a value
vi ∈ Rdv via linear transformations, where dq = dk. De-
note the sequence of inputs, queries, keys, and values as
X ∈ Rn×d,Q ∈ Rn×dq ,K ∈ Rn×dk , and V ∈ Rn×dv , re-
spectively. The output of the self-attention layer Z ∈ Rn×dv
is a weighted sum of all values:

Z = softmax

(
QKT√
dq

)
V.

With the self-attention mechanism as well as other tech-
niques, such as multi-head attention and residual connection,
Transformers can learn expressive representations and model
long-term interactions.

2.3 Combination of Transformers and RL

We notice that a growing number of works are seeking
to combine Transformers and RL in diverse ways. In
general, Transformers can be used as one component for
RL algorithms, e.g., a representation module or a dynamic
model. Transformers can also serve as one whole sequential
decision-maker. Figure 1 provides a sketch of Transformers’
different roles in the context of RL.

3 Network Architecture in RL
Before presenting the taxonomy of current methods in Trans-
formRL, we start by reviewing the early progress of network
architecture design in RL, and summarize their challenges.
We do this because Transformer itself is an advanced neu-
ral network and designing appropriate neural networks con-
tributes to the success of DRL.
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Figure 1: An illustrating example of TransformRL. On the one hand,
Transformers can be used as one component in RL. Particularly,
Transformers can encode diverse sequences, such as entities, agents,
and stacks of historical information; and it is also an expressive pre-
dictor for the dynamics model. On the other hand, Transformers
can integrate all subroutines in RL and act as a sequential decision-
maker. Overall, Transformers can improve RL’s learning efficiency
in single-task, multi-task, and cross-domain settings.

3.1 Architectures for function approximators
Since the seminal work Deep Q-Network [Mnih et al., 2015],
many efforts have been made in developing network architec-
tures for DRL agents. Improvements in network architectures
in RL can be mainly categorized into two classes. The first
class is to design a new structure that incorporates RL induc-
tive bias to ease the difficulty of training policy or value func-
tions. For example, Wang et al. [2016] propose dueling net-
work architecture with one for the state value function and an-
other for the state-dependent action advantage function. This
choice of architecture incorporates inductive bias that gener-
alizes learning across actions. Other examples include the
value decomposition network which has been used to learn
local Q-values for individual agent [Sunehag et al., 2017] or
sub-reward [Lin et al., 2019]. The second class is to investi-
gate whether general techniques of neural networks (e.g., reg-
ularization, skip connection, batch normalization) can be ap-
plied to RL. To name a few, Ota et al. [2020] find that increas-
ing input dimensionality while using an online feature ex-
tractor to boost state representation helps improve the perfor-
mance and sample efficiency of DRL algorithms. Sinha et al.
[2020] propose a deep dense architecture for DRL agents, us-
ing skip connections for efficient learning, with an inductive
bias to mitigate data-processing inequality. Ota et al. [2021]
use DenseNet [Huang et al., 2017] with decoupled represen-
tation learning to improve flows of information and gradients
for large networks. Recently, due to the superior performance
of Transformers, some researchers have attempted to apply
Transformers architecture in policy optimization algorithms,
but found that the vanilla Transformer design fails to achieve
reasonable performance in RL tasks [Parisotto et al., 2020].

3.2 Challenges
While Transformer-based architectures have made rapid
progress in SL domains in past years, applying them in RL

is not straightforward. Actually, there exist several unique
challenges.

On the one hand, from the view of RL, many researchers
point out that existing RL algorithms are incredibly sensi-
tive to architectures of deep neural networks [Henderson et
al., 2018; Engstrom et al., 2019; Andrychowicz et al., 2020].
First, the paradigm of alternating between data collection and
policy optimization (i.e., data distribution shift) in RL induces
non-stationarity during training. Second, RL algorithms are
often highly sensitive to design choices in the training pro-
cess. In particular, when coupled with bootstrapping and off-
policy learning, learning with function approximations can
diverge when the value estimates become unbounded (i.e.,
“deadly triad”) [Van Hasselt et al., 2018]. More recently, Em-
mons et al. [2021] identify that carefully choosing model ar-
chitecture and regularization are crucial for the performance
of DRL agents.

On the other hand, from the view of Transformers, the
Transformer-based architectures suffer from large memory
footprints and high latency which hinder their efficient de-
ployment and inference. Recently, many researchers aim to
make improvements around computational and memory effi-
ciency upon the original Transformer architecture [Tay et al.,
2022], but most of these works focus on SL domains. In the
context of RL, Parisotto and Salakhutdinov [2021] propose
to distill learning progress from a large capacity Transformer-
based learner model to a small capacity actor model to bypass
the high inference latency of Transformers. However, these
methods are still expensive in terms of memory and computa-
tion. So far, the idea of efficient or lightweight Transformers
has not yet been fully explored in the RL community.

4 Transformers in RL

Although Transformer has become a foundation model in
most supervised learning research, it has not been widely
used in the RL community for a long time due to the
aforementioned challenges. Actually, most early attempts
of TransformRL apply Transformers for state representation
learning or providing memory information while still apply-
ing the standard RL algorithms for agent learning such as
temporal difference learning and policy optimization.

Therefore, although introducing Transformers as function
approximators, these methods still suffer from challenges
from the conventional RL framework. Until recently, offline
RL makes it possible to learn optimal policy from large-scale
offline data. Inspired by offline RL, recent works further treat
the RL problem as a conditional sequence modeling problem
on fixed experiences. By doing so, it helps to bypass the chal-
lenges of bootstrapping error in traditional RL, consequently
enabling the Transformer architecture to unleash its powerful
sequential modeling ability.

In this survey paper, we retrospect the advances of Trans-
formRL, and provide a taxonomy to present the current meth-
ods. We categorize existing methods into four classes: rep-
resentation learning, model learning, sequential decision-
making, and generalist agents. Figure 2 provides a taxonomy
sketch with a subset of corresponding works.
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Figure 2: The taxonomy of TransformRL. The timeline is based on the first work related to the branch.

4.1 Transformers for representation learning
Considering the sequential nature of RL tasks, it is reason-
able to try out a Transformer encoder module. In fact, vari-
ous sequences in RL tasks require processing, such as local
per-timestep sequence (multi-entity sequence [Vinyals et al.,
2019; Baker et al., 2019], multi-agent sequence [Wen et al.,
2022]), temporal sequence (trajectory [Parisotto et al., 2020;
Banino et al., 2021]) and so on.

Encoder for local per-timestep sequence
The early notable success of this method is embodied in using
Transformers to process complex information from a variable
number of entities scattered in the agent’s observation. Zam-
baldi et al. [2018a] first propose to capture relational reason-
ing over structured observation with multi-head dot-product
attention, which is subsequently used in AlphaStar [Vinyals et
al., 2019] to process multi-entity observation in the challeng-
ing multi-agent StarCraft II environment. In such a mecha-
nism, called entity Transformer, the observation is encoded
in the form:

Emb = Transformer(e1, · · · , ei, · · · ),
where ei represents the agent’s observation on entity i either
directly sliced from the whole observation or given by an en-
tity tokenizer.

Several follow-up works have enriched entity Transformer
mechanisms. Hu et al. [2020] propose a compatible decou-
pling policy to explicitly associate actions to various entities
and exploit an attention mechanism for policy explanation.
To solve the challenging one-shot visual imitation, Dasari and
Gupta [2021] use Transformers to learn a representation fo-
cusing on task-specific elements.

Similar to entities scattered in observation, some works
exploit Transformers to process other local per-timestep se-
quences. Tang and Ha [2021] leverage the attention mecha-
nism of Transformers to process sensory sequence and con-
struct a policy that is permutation invariant w.r.t. inputs. In
the incompatible multi-task RL setting, Transformer is pro-
posed to extract morphological domain knowledge [Kurin et
al., 2020].

Encoder for temporal sequence
Meanwhile, it is also reasonable to process temporal sequence
with Transformers. Such a temporal encoder works as a

memory architecture,

Emb0:t = Transformer(o0, · · · , ot),

where ot represents the agent’s observation at timestep t and
Emb0:t represents the embedding of historical observations
from initial observation to current observation.

In the early work, Mishra et al. [2018] fail to process tem-
poral sequence with vanilla Transformers and find it even
worse than random policy in some certain tasks. Gated
Transformer-XL (GTrXL) [Parisotto et al., 2020] is the first
efficacious scheme to use Transformer as a memory architec-
ture to process trajectories. GTrXL modifies Transformer-XL
architecture [Dai et al., 2019] with Identity Map Reordering
to provide a ‘skip’ path from temporal input to the Trans-
former output, which may conduce to a stabilizing training
procedure from the beginning. Furthermore, Loynd et al.
[2020] propose a shortcut mechanism with memory vectors
for long-term dependency and Irie et al. [2021] combine the
linear Transformer with Fast Weight Programmers for better
performance. In addition, Melo [2022] proposes to use the
self-attention mechanism to mimic memory reinstatement for
memory-based meta RL.

While Transformer outperforms LSTM/RNN as the mem-
ory horizon grows and parameter scales, it suffers from
poor data efficiency with RL signals. Follow-up works ex-
ploit some auxiliary (self-)supervised tasks to benefit learn-
ing [Banino et al., 2021] or use pre-trained Transformer ar-
chitecture as a temporal encoder [Li et al., 2022; Fan et al.,
2022].

4.2 Transformers for model learning
In addition to using Transformers as the encoder for sequence
embedding, Transformer architecture also serves as the back-
bone of the environmental model in some model-based al-
gorithms. Distinct from the prediction conditioned on single-
step observation and action, Transformer enables the environ-
mental model to predict transition conditioned on a certain
length of historical information.

Practically, the success of Dreamer and subsequent al-
gorithms [Hafner et al., 2020, 2021; Seo et al., 2022] has
demonstrated the benefits of the world model conditioned on
history in some partially observable environments or in some



tasks that require a memory mechanism. A world model con-
ditioned on history consists of an observation encoder to cap-
ture abstract information and a transition model to learn the
transition in latent space, formally:

zt ∼ Penc(zt|ot)
ẑt+1 ∼ Ptrans(ẑt+1|z≤t, a≤t)
r̂t+1 ∼ Ptrans(r̂t+1|z≤t, a≤t)
γ̂t+1 ∼ Ptrans(γ̂t+1|z≤t, a≤t),

where zt represents the latent embedding of observation ot,
and Penc, Ptrans denote observation encoder and transition
model respectively.

There are several attempts to build a world model condi-
tioned on history with Transformer architecture instead of
RNN in previous works. Concretely, Chen et al. [2022]
replace RNN-based Recurrent State-Space Model (RSSM)
in Dreamer with a Transformer-based model (Transformer
State-Space Model, TSSM). IRIS (Imagination with auto-
Regression over an Inner Speech) [Micheli et al., 2022]
learns a Transformer-based world model simply via auto-
regressive learning on rollout experience without KL balanc-
ing like Dreamer and achieves considerable results on the
Atari [Bellemare et al., 2013] 100k benchmark.

Besides, some works also try out Transformer-based world
model with planning. Ozair et al. [2021] verify the efficacy
of planning with a Transformer transition model to tackle
stochastic tasks requiring long tactical look-ahead. Sun et al.
[2022] propose a goal-conditioned Transformer-based transi-
tion model which is effective in visual-grounded planning for
procedural tasks.

It is true that both RNN and Transformer are compatible
with learning a world model conditioned on historical infor-
mation. However, Micheli et al. [2022] find Transformer
architecture is a more data-efficient world model compared
with Dreamer, and experimental results of TSSM demon-
strate that Transformer architecture is lucrative in tasks that
require long-term memory. In fact, although model-based
methods are data-efficient, they suffer from the compound-
ing prediction error increasing with model rollout length,
which greatly affects the performance and limits model roll-
out length [Janner et al., 2019]. Thus, it is valuable to
maintain prediction accuracy on longer sequences, and the
Transformer-based world model might benefit from this as-
pect.

4.3 Transformers for sequential decision-making
In addition to being an expressive architecture to be plugged
into components of traditional RL algorithms, Transformer
itself can serve as a model that conducts sequential decision-
making directly. This is because RL can be viewed as a condi-
tional sequence modeling problem — generating a sequence
of actions that can yield high returns.

Transformers as a milestone for offline RL
One challenge for Transformers to be widely used in RL
is that the non-stationarity during the training process may
hinder its optimization. However, the recent prosperity in
offline RL motivates a growing number of works focusing

on training a Transformer model on offline data that can
achieve state-of-the-art performance. Decision Transformer
(DT) [Chen et al., 2021] first applies this idea by modeling
RL as an autoregressive generation problem to produce the
desired trajectory:

τ =
(
R̂1, s1, a1, R̂2, s2, a2, . . . R̂T , sT , aT

)
,

where R̂t =
∑T
t′=t r(st′ , at′) is the return-to-go. By condi-

tioning on the proper target return value at the first timestep,
DT can generate desired actions without explicit TD learn-
ing or dynamic programming. Concurrently with this work,
Trajectory Transformer (TT) [Janner et al., 2021] adopts a
similar Transformer structure, but alternatively proposes to
use beam search for planning during execution. The em-
pirical results demonstrate that TT performs well on long-
horizon prediction. Moreover, TT shows that with mild ad-
justments on vanilla beam search, TT can perform imitation
learning, goal-conditioned RL, and offline RL under the same
framework. Regarding the behavior cloning setting, Behavior
Transformer (BeT) [Shafiullah et al., 2022] proposes a sim-
ilar Transformer structure as TT to learn from multi-modal
datasets.

In light of Transformer’s superior accuracy on sequence
prediction, Bootstrapped Transformer (BooT) [Wang et al.,
2022] proposes to bootstrap Transformer to generate data
while optimizing it for sequential decision-making. Boot-
strapping Transformer for data augmentation can expand the
amount and coverage of offline datasets, and hence achieve
performance improvement. More specifically, BooT com-
pares different data generation schemes and bootstrapping
schemes to analyze how BooT can benefit policy learning.
The results show that it can generate data consistent with
the underlying MDP without additional explicit conservative
constraints.

Different choices of conditioning
While conditioning on return-to-go is a practical choice to
incorporate future trajectory information, one natural ques-
tion is whether other kinds of hindsight information can ben-
efit sequential decision-making. To this end, Furuta et al.
[2021] propose Hindsight Information Matching (HIM), a
unified framework that can formulate variants of hindsight
RL problems. More specifically, HIM converts hindsight RL
into matching any pre-defined statistics of future trajectory
information w.r.t. the distribution induced by the learned con-
ditional policy. Furthermore, this work proposes General-
ized DT (GDT) for arbitrary choices of statistics and demon-
strates its applications in two HIM problems: offline multi-
task state-marginal matching and imitation learning.

Specifically, one drawback of conditioning on return-to-go
is that it will lead to sub-optimal actions in stochastic envi-
ronments. This is because the training data may contain sub-
optimal actions that result in high rewards by luck due to the
stochasticity of transitions. Paster et al. [2022] identify this
limitation in general RvS methods. They further formulate
RvS as an HIM problem and discover that RvS policies can
achieve goals in consistency if the information statistics are
independent of transitions’ stochasticity. Based on this impli-
cation, they propose environment-stochasticity-independent



Method Setting Hindsight Info Inference Additional Structure/Usage

DT [Chen et al., 2021] Offline return-to-go conditioning basic Transformer structure
TT [Janner et al., 2021] IL/GCRL/Offline return-to-go beam search basic Transformer structure
BeT [Shafiullah et al., 2022] BC none conditioning basic Transformer structure
BooT [Wang et al., 2022] Offline return-to-go beam search data augmentation
GDT [Furuta et al., 2021] HIM arbitrary conditioning anti-causal aggregator
ESPER [Paster et al., 2022] Offline (stochastic) expected return conditioning adversarial clustering
DoC [Yang et al., 2022] Offline (stochastic) learned representation conditioning additional latent value func.
QDT [Yamagata et al., 2022] Offline relabelled return-to-go conditioning additional Q func.
StARformer [Shang et al., 2022] IL/Offline return-to-go/reward conditioning Step Transformer
ConDT [Konan et al., 2022] Offline learned representation conditioning return-dependent transformation
SPLT [Villaflor et al., 2022] Offline none min-max search separate models for world and policy
ODT [Zheng et al., 2022] Online finetune return-to-go conditioning trajectory-based entropy
MADT [Meng et al., 2021] Online finetune (multi-agent) none conditioning separate models for actor and critic

Table 1: A summary of Transformers for sequential decision-making.

representations (ESPER), an algorithm that first clusters tra-
jectories and estimates average returns for each cluster, and
then trains a policy conditioned on the expected returns. Al-
ternatively, Dichotomy of Control (DoC) [Yang et al., 2022]
proposes to learn a representation that is agnostic to stochas-
tic transitions and rewards in the environment via minimizing
mutual information. During inference, DoC selects the rep-
resentation with the highest value and feeds it into the condi-
tioned policy.

In addition to exploring different hindsight information,
another approach to enhance return-to-go conditioning is to
augment the dataset. Q-learning DT (QDT) [Yamagata et al.,
2022] proposes to use a conservative value function to re-
label return-to-go in the dataset, hence combining DT with
dynamic programming and improving its stitching capability.

Improving the structure of Transformers
Apart from studying different conditioned information, there
are also some works to improve the structure of DT. To
solve visual input tasks, StARformer [Shang et al., 2022]
proposes learning an additional Step Transformer for local
per-timestep representation and using this representation for
sequence modeling. Konan et al. [2022] believe that differ-
ent levels of return-to-go throughout the task procedure are
the identification of the sub-tasks during task execution, and
the tokenization requirements of each sub-task are distinct.
To address this problem, they propose Contrastive Decision
Transformer (ConDT) structure, where a return-dependent
transformation is applied to state embedding and action em-
bedding before putting them into a causal Transformer. The
return-dependent transformation intuitively captures features
specific to the current sub-task and is learned with an aux-
iliary contrastive loss to strengthen the correlation between
transformation and return. Villaflor et al. [2022] analyze one
disadvantage of implementing model prediction and policy
network in the same model as TT. In safety-critical scenar-
ios with long-term planning, the preference between predict-
ing future states and making action decisions is often con-
tradictory. Concretely, it is necessary to find the best ac-
tion in the worst future, which is difficult to complete in one
model. Therefore they propose SeParated Latent Trajectory
Transformer (SPLT Transformer), consisting of two indepen-
dent Transformer-based CVAE structures of the world model
and policy model, with the trajectory as the condition. SPLT
Transformer searches the latent variable space to minimize

return-to-go in the world model and to maximize return-to-go
in the policy model during planning, similar to the min-max
search procedure.

Extending DT beyond offline RL
Although most of the works around Transformers for sequen-
tial decision-making focus on the offline setting, there are
several attempts to adapt this paradigm to online and multi-
agent settings. Online Decision Transformer (ODT) [Zheng
et al., 2022] replaces the deterministic policy in DT with a
stochastic counterpart and defines a trajectory-level policy en-
tropy to help exploration during online finetuning. Besides,
such a two-stage paradigm (offline pre-training with online
finetuning) is also applied to Multi-Agent Decision Trans-
former (MADT) [Meng et al., 2021], where a decentralized
DT is pre-trained with offline data from the perspective of in-
dividual agents and is used as the policy network in online
finetuning with MAPPO [Yu et al., 2021a].

4.4 Transformers for generalist agents
In view of the fact that Decision Transformer has already
flexed its muscles in various tasks with offline data, several
works turn to consider whether Transformers can enable a
generalist agent to solve multiple tasks or problems, as in the
CV and NLP fields.

Generalize to multiple tasks
Some works draw on the ideas of pre-training on large-scale
datasets in CV and NLP, and try to abstract a general pol-
icy from large-scale multi-task datasets. Multi-Game Deci-
sion Transformer (MGDT) [Lee et al., 2022], a variant of DT,
learns DT on a diverse dataset consisting of both expert and
non-expert data and achieves close-to-human performance on
multiple Atari games with a single set of parameters. In order
to obtain expert-level performance with a dataset containing
non-expert experiences, the expert action inference mecha-
nism is designed in MGDT, which calculates an expert-level
return-to-go posterior distribution from the prior distribution
of return-to-go and a preset expert-level return-to-go likeli-
hood proportional according to Bayesian formula. Likewise,
Switch Trajectory Transformer (SwitchTT) [Lin et al., 2022],
a multi-task extension to TT, exploits a sparsely activated
model that replaces the FFN layer with a mixture-of-expert
layer for efficient multi-task offline learning. Besides, a dis-
tributional trajectory value estimator is adopted to model the



uncertainty of value estimates. With these two enhanced fea-
tures, SwitchTT achieves improvement over TT across multi-
ple tasks in terms of both performance and training speed.
MGDT and SwitchTT exploit experiences collected from
multiple tasks and various performance-level policies to learn
a general policy. Yet, constructing a large-scale multi-task
dataset is non-trivial. Unlike large-scale datasets in CV or
NLP, which are usually constructed with massive public data
from the Internet and simple manual labeling, action informa-
tion is always absent from public sequential decision-making
data and is not facile to label. Thus, Baker et al. [2022]
propose a semi-supervised scheme to utilize large-scale on-
line data without action information and the key is to learn
a Transformer-based Inverse Dynamic Model (IDM), which
predicts the action information with past and future obser-
vations and is consequently capable of labeling massive un-
labeled online video data. IDM is learned on a small-scale
dataset containing manually labeled actions and is accurate
enough to provide action labels of videos for effective behav-
ior cloning and fine-tuning.

The efficacy of prompting [Brown et al., 2020] for adap-
tation to new tasks has been proven in many prior works
in NLP. Following this idea, several works aim at lever-
aging prompting techniques for DT-based methods to en-
able fast adaptation. Prompt-based Decision Transformer
(Prompt-DT) [Xu et al., 2022] samples a sequence of tran-
sitions from the few-shot demonstration dataset as prompt,
and shows that it can achieve few-shot policy generalization
on offline meta RL tasks. Reed et al. [2022] further exploit
prompt-based architecture to learn a generalist agent (Gato)
via auto-regressive sequence modeling on a super large-scale
dataset covering natural language, image, temporal decision-
making, and multi-modal data. Gato is capable of a range
of tasks from various domains, including text generation and
decision-making. Specifically, Gato unifies multi-modal se-
quences in a shared tokenization space and adapts prompt-
based inference in deployment to generate task-specific se-
quences. Despite being effective, Laskin et al. [2022] point
out that one limitation of the prompt-based framework is that
the prompt is demonstrations from a well-behaved policy,
as contexts in both works are not sufficient to capture pol-
icy improvement. Instead, they propose Algorithm Distilla-
tion (AD) [Laskin et al., 2022], which instead trains a Trans-
former on across-episode sequences of the learning progress
of single-task RL algorithms. Therefore, even in new tasks,
the Transformer can learn to gradually improve its policy dur-
ing the auto-regressive generation.

Generalize to multiple domains
Beyond generalizing to multiple tasks, Transformer is also a
powerful “universal” model to unify a range of domains re-
lated to sequential decision-making. Motivated by advances
in masked language modeling [Devlin et al., 2018] technique
in NLP, Carroll et al. [2022] propose Uni[MASK], which uni-
fies various commonly-studied domains, including behavioral
cloning, offline RL, GCRL, past/future inference, and dynam-
ics prediction, as one mask inference problem. Uni[MASK]
compares different masking schemes, including task-specific
masking, random masking, and finetune variants. It is shown

that one single Transformer trained with random masking can
solve arbitrary inference tasks. More surprisingly, compared
to the task-specific counterpart, random masking can still im-
prove performance in the single-task setting.

In addition to unifying sequential inference problems in
the RL domain, Reid et al. [2022] find it beneficial to fine-
tune DT with Transformer pre-trained on language datasets
or multi-modal datasets containing language modality. Con-
cretely, Reid et al. [2022] find out that pre-training Trans-
former with language data while encouraging similarity be-
tween language and RL-based representations can help im-
prove the performance and convergence speed of DT. This
finding implies that even knowledge from non-RL fields can
benefit RL training via Transformers. Additionally, Huang et
al. [2022] discover that pre-trained large-scale language mod-
els are capable of generating reasonable high-level plans to
accomplish complex tasks without further finetuning. With
proper correction and prompting, the Transformer can gener-
ate valid actions in the embodied environment. Furthermore,
similarly to Gato, RT-1 [Brohan et al., 2022] leverages large-
scale datasets with diverse robotics experiences and language
instructions to train a Transformer as well as a tokenizer,
which achieves high performance on downstream tasks.

5 Summary and Future Perspectives
This paper briefly reviews advances in Transformers for RL.
We provide a taxonomy of these advances: a) Transformers
can serve as a powerful module of RL, e.g., acting as a rep-
resentation module or a world model; b) Transformers can
serve as a sequential decision-maker; c) Transformers can
benefit generalization across tasks and domains. While we
cover representative works on this topic, the usage of Trans-
formers in RL is not limited to our discussions. Given the
prosperity of Transformers in the broader AI community, we
believe that combining Transformers and RL is a promising
trend. To conclude this survey, in the following, we discuss
future perspectives and open problems for this direction.

Combining Reinforcement Learning and (Self-) Super-
vised Learning. Retracing the development of Trans-
formRL, the training methods involve both RL and (self-
)supervised learning. When serving as a representation mod-
ule that is trained under the conventional RL framework,
optimization of the Transformer architecture is usually un-
stable. When using Transformers to solve decision-making
problems via sequence modeling, the “deadly triad prob-
lem” [Van Hasselt et al., 2018] is eliminated due to (self-
)supervised learning paradigm. Under the framework of (self-
)supervised learning, the performance of policy is deeply
bounded to offline-data quality and the explicit trade-off be-
tween exploitation and exploration no longer exists. There-
fore, a better policy may be learned when we combine RL
and (self-)supervised learning in Transformer learning. Some
works [Zheng et al., 2022; Meng et al., 2021] have tried out
the scheme of supervised pre-training and RL-involved fine-
tuning. However, exploration can be limited with a relatively
fixed policy [Nair et al., 2020], which is one of the bottle-
necks to be resolved. Also, along this line, the tasks used for
performance evaluation are relatively simple. It is worthwhile



to further explore whether Transformers can scale such (self-
)supervised learning up to larger datasets, more complex en-
vironments, and real-world applications. Further, we expect
future work to provide more theoretical and empirical insights
to characterize under which conditions this (self-)supervised
learning is expected to perform well [Brandfonbrener et al.,
2022].

Bridging Online and Offline Learning via Transformers.
Stepping into Offline RL is a milestone in TransformRL.
Practically, utilizing Transformers to capture dependencies in
decision sequence and to abstract policy is mainly insepara-
ble from the support of considerable offline data used. How-
ever, it is unfeasible for some decision-making tasks to get
rid of the online framework in real applications. On the
one hand, it is not that easy to obtain expert data in certain
tasks. On the other hand, some environments are open-ended
(e.g., Minecraft), which means the policy has to continually
adjust to deal with unseen tasks during online interaction.
Therefore, we believe that bridging online learning and of-
fline learning is necessary. However, most research progress
following Decision Transformer focuses on the offline learn-
ing framework. Several works have attempted to adopt the
paradigm of offline pre-training and online fine-tuning [Xie
et al., 2022]. Yet, the distribution shift in online fine-tuning
still exists as that in offline RL algorithms, we thereby ex-
pect some special designs for Decision Transformer to ad-
dress this issue. In addition, how to train an online Decision
Transformer from scratch is an interesting open problem.

Transformer Structure Tailored for Decision-making
Problems. The Transformer structures in the current De-
cision Transformer series methods are mainly vanilla Trans-
former, which is originally designed for the text sequence
and may not fit the nature of decision-making problems. For
example, is it appropriate to adopt the vanilla self-attention
mechanism for trajectory sequences? Whether different ele-
ments in the decision sequence or different parts of the same
elements need to be distinguished in position embedding? In
addition, as there are many variants of representing trajectory
as a sequence in different Decision Transformer algorithms,
how to choose from them still lacks systematic research. For
instance, how to select robust hindsight information when de-
ploying such algorithms in the industry? Furthermore, the
vanilla Transformer is a structure with huge computational
cost, which makes it expensive at both training and inference
stages, and high memory occupation, which constrains the
length of the dependencies it captures. To alleviate these,
some works in NLP [Zhou et al., 2021] have improved the
structure from these aspects, and it is also worth exploring
whether similar structures can be used in the decision-making
problem.

Towards More Generalist Agents with Transformers.
Our review on Transformers for generalist agents has shown
the potential of Transformers as a general policy (Section
4.4). In fact, the design of Transformers allows multiple
modalities (e.g., image, video, text, and speech) to be pro-
cessed using similar processing blocks and demonstrates ex-
cellent scalability to very large-capacity networks and huge
datasets. Recent works have made substantial progress in

training agents that can be capable of performing multiple
and cross-domain tasks. However, given that these agents are
trained on huge amounts of data, it is still uncertain whether
they merely memorize the dataset and if they can perform ef-
ficient generalization. Therefore, how to learn an agent that
can generalize to unseen tasks without strong assumptions is
a problem worth studying [Boustati et al., 2021]. Moreover,
we are curious about whether Transformer is strong enough
to learn a general world model that can be used in different
tasks and scenarios.

RL for Transformers. While we have discussed how RL
can benefit from the usage of Transformers, the reverse di-
rection, i.e., using RL to benefit Transformer training is an
intriguing open problem yet less explored. We see that,
very recently, Reinforcement Learning from Human Feed-
back (RLHF) [Ouyang et al., 2022] learns a reward model
and uses RL algorithms to finetune Transformer for aligning
language models with human intent. In the future, we be-
lieve RL can be a useful tool to further polish Transformer’s
performance in other domains.
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Cheung, Przemysław Dębiak, Christy Dennison, David
Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al.



Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680, 2019.

Ayman Boustati, Hana Chockler, and Daniel C McNamee.
Transfer learning with causal counterfactual reasoning in
decision transformers. arXiv preprint arXiv:2110.14355,
2021.

David Brandfonbrener, Alberto Bietti, Jacob Buckman, Ro-
main Laroche, and Joan Bruna. When does return-
conditioned supervised learning work for offline reinforce-
ment learning? arXiv preprint arXiv:2206.01079, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine
Hsu, et al. Rt-1: Robotics transformer for real-world con-
trol at scale. arXiv preprint arXiv:2212.06817, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Micah Carroll, Orr Paradise, Jessy Lin, Raluca Georgescu,
Mingfei Sun, David Bignell, Stephanie Milani, Katja Hof-
mann, Matthew Hausknecht, Anca Dragan, et al. Unimask:
Unified inference in sequential decision problems. arXiv
preprint arXiv:2211.10869, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya
Grover, Misha Laskin, Pieter Abbeel, Aravind Srinivas,
and Igor Mordatch. Decision transformer: Reinforcement
learning via sequence modeling. Advances in neural infor-
mation processing systems, 34:15084–15097, 2021.

Chang Chen, Yi-Fu Wu, Jaesik Yoon, and Sungjin Ahn.
Transdreamer: Reinforcement learning with transformer
world models. arXiv preprint arXiv:2202.09481, 2022.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell,
Quoc Le, and Ruslan Salakhutdinov. Transformer-xl: At-
tentive language models beyond a fixed-length context. In
Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 2978–2988, 2019.

Sudeep Dasari and Abhinav Gupta. Transformers for one-
shot visual imitation. In Conference on Robot Learning,
pages 2071–2084. PMLR, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Linhao Dong, Shuang Xu, and Bo Xu. Speech-transformer:
a no-recurrence sequence-to-sequence model for speech
recognition. In 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
5884–5888. IEEE, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words:

Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and
Sergey Levine. Rvs: What is essential for offline rl via
supervised learning? arXiv preprint arXiv:2112.10751,
2021.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris
Tsipras, Firdaus Janoos, Larry Rudolph, and Aleksander
Madry. Implementation matters in deep rl: A case study
on ppo and trpo. In International conference on learning
representations, 2019.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar,
Yuncong Yang, Haoyi Zhu, Andrew Tang, De-An Huang,
Yuke Zhu, and Anima Anandkumar. Minedojo: Building
open-ended embodied agents with internet-scale knowl-
edge. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2022.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy
deep reinforcement learning without exploration. In In-
ternational conference on machine learning, pages 2052–
2062. PMLR, 2019.

Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Gen-
eralized decision transformer for offline hindsight informa-
tion matching. arXiv preprint arXiv:2111.10364, 2021.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu,
Coline Devin, Benjamin Eysenbach, and Sergey Levine.
Learning to reach goals via iterated supervised learning.
arXiv preprint arXiv:1912.06088, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Moham-
mad Norouzi. Dream to control: Learning behaviors by la-
tent imagination. arXiv preprint arXiv:1912.01603, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Moham-
mad Norouzi. Dream to control: Learning behaviors by
latent imagination. In International Conference on Learn-
ing Representations, 2020.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi,
and Jimmy Ba. Mastering atari with discrete world models.
In International Conference on Learning Representations,
2021.

Matthew Hausknecht and Peter Stone. Deep recurrent q-
learning for partially observable mdps. In 2015 aaai fall
symposium series, 2015.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle
Pineau, Doina Precup, and David Meger. Deep reinforce-
ment learning that matters. In Proceedings of the AAAI
conference on artificial intelligence, volume 32, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 9(8):1735–1780, 1997.

Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang.
Updet: Universal multi-agent rl via policy decoupling with
transformers. In International Conference on Learning
Representations, 2020.



Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor
Mordatch. Language models as zero-shot planners: Ex-
tracting actionable knowledge for embodied agents. arXiv
preprint arXiv:2201.07207, 2022.

Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen
Schmidhuber. Going beyond linear transformers with re-
current fast weight programmers. Advances in Neural In-
formation Processing Systems, 34:7703–7717, 2021.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine.
When to trust your model: Model-based policy optimiza-
tion. Advances in Neural Information Processing Systems,
32, 2019.

Michael Janner, Qiyang Li, and Sergey Levine. Reinforce-
ment learning as one big sequence modeling problem.
In ICML 2021 Workshop on Unsupervised Reinforcement
Learning, 2021.

Salman Khan, Muzammal Naseer, Munawar Hayat,
Syed Waqas Zamir, Fahad Shahbaz Khan, and Mubarak
Shah. Transformers in vision: A survey. ACM computing
surveys (CSUR), 54(10s):1–41, 2022.

Sachin G Konan, Esmaeil Seraj, and Matthew Gombolay.
Contrastive decision transformers. In 6th Annual Confer-
ence on Robot Learning, 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey
Levine. Conservative q-learning for offline reinforcement
learning. Advances in Neural Information Processing Sys-
tems, 33:1179–1191, 2020.

Vitaly Kurin, Maximilian Igl, Tim Rocktäschel, Wendelin
Boehmer, and Shimon Whiteson. My body is a cage: the
role of morphology in graph-based incompatible control.
arXiv preprint arXiv:2010.01856, 2020.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto,
Stephen Spencer, Richie Steigerwald, DJ Strouse, Steven
Hansen, Angelos Filos, Ethan Brooks, et al. In-context
reinforcement learning with algorithm distillation. arXiv
preprint arXiv:2210.14215, 2022.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

Kuang-Huei Lee, Ofir Nachum, Sherry Yang, Lisa Lee,
C. Daniel Freeman, Sergio Guadarrama, Ian Fischer, Win-
nie Xu, Eric Jang, Henryk Michalewski, and Igor Mor-
datch. Multi-game decision transformers. In Advances in
Neural Information Processing Systems, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin
Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint
arXiv:2005.01643, 2020.

Shuang Li, Xavier Puig, Yilun Du, Clinton Wang, Ekin
Akyurek, Antonio Torralba, Jacob Andreas, and Igor

Mordatch. Pre-trained language models for interactive
decision-making. arXiv preprint arXiv:2202.01771, 2022.

Zichuan Lin, Li Zhao, Derek Yang, Tao Qin, Tie-Yan Liu, and
Guangwen Yang. Distributional reward decomposition for
reinforcement learning. Advances in neural information
processing systems, 32, 2019.

Qinjie Lin, Han Liu, and Biswa Sengupta. Switch tra-
jectory transformer with distributional value approxima-
tion for multi-task reinforcement learning. arXiv preprint
arXiv:2203.07413, 2022.

Minghuan Liu, Menghui Zhu, and Weinan Zhang. Goal-
conditioned reinforcement learning: Problems and solu-
tions. arXiv preprint arXiv:2201.08299, 2022.

Ricky Loynd, Roland Fernandez, Asli Celikyilmaz, Adith
Swaminathan, and Matthew Hausknecht. Working mem-
ory graphs. In International conference on machine learn-
ing, pages 6404–6414. PMLR, 2020.

Luckeciano C Melo. Transformers are meta-reinforcement
learners. In International Conference on Machine Learn-
ing, pages 15340–15359. PMLR, 2022.

Linghui Meng, Muning Wen, Yaodong Yang, Chenyang Le,
Xiyun Li, Weinan Zhang, Ying Wen, Haifeng Zhang, Jun
Wang, and Bo Xu. Offline pre-trained multi-agent decision
transformer: One big sequence model conquers all star-
craftii tasks. arXiv preprint arXiv:2112.02845, 2021.

Vincent Micheli, Eloi Alonso, and François Fleuret. Trans-
formers are sample efficient world models. arXiv preprint
arXiv:2209.00588, 2022.

Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter
Abbeel. A simple neural attentive meta-learner. In Inter-
national Conference on Learning Representations, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-
drei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,
Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,
et al. Human-level control through deep reinforcement
learning. nature, 518(7540):529–533, 2015.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey
Levine. Awac: Accelerating online reinforcement learn-
ing with offline datasets. arXiv preprint arXiv:2006.09359,
2020.

Kei Ota, Tomoaki Oiki, Devesh Jha, Toshisada Mariyama,
and Daniel Nikovski. Can increasing input dimension-
ality improve deep reinforcement learning? In Inter-
national Conference on Machine Learning, pages 7424–
7433. PMLR, 2020.

Kei Ota, Devesh K Jha, and Asako Kanezaki. Training larger
networks for deep reinforcement learning. arXiv preprint
arXiv:2102.07920, 2021.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L Wainwright, Pamela Mishkin, Chong Zhang, Sand-
hini Agarwal, Katarina Slama, Alex Ray, et al. Training
language models to follow instructions with human feed-
back. arXiv preprint arXiv:2203.02155, 2022.



Sherjil Ozair, Yazhe Li, Ali Razavi, Ioannis Antonoglou,
Aaron Van Den Oord, and Oriol Vinyals. Vector quan-
tized models for planning. In International Conference on
Machine Learning, pages 8302–8313. PMLR, 2021.

Emilio Parisotto and Ruslan Salakhutdinov. Efficient trans-
formers in reinforcement learning using actor-learner dis-
tillation. arXiv preprint arXiv:2104.01655, 2021.

Emilio Parisotto, Francis Song, Jack Rae, Razvan Pascanu,
Caglar Gulcehre, Siddhant Jayakumar, Max Jaderberg,
Raphael Lopez Kaufman, Aidan Clark, Seb Noury, et al.
Stabilizing transformers for reinforcement learning. In In-
ternational conference on machine learning, pages 7487–
7498. PMLR, 2020.

Keiran Paster, Sheila McIlraith, and Jimmy Ba. You can’t
count on luck: Why decision transformers fail in stochastic
environments. arXiv preprint arXiv:2205.15967, 2022.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez
Colmenarejo, Alexander Novikov, Gabriel Barth-Maron,
Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Sprin-
genberg, et al. A generalist agent. arXiv preprint
arXiv:2205.06175, 2022.

Machel Reid, Yutaro Yamada, and Shixiang Shane Gu. Can
wikipedia help offline reinforcement learning? arXiv
preprint arXiv:2201.12122, 2022.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Sil-
ver. Universal value function approximators. In Interna-
tional conference on machine learning, pages 1312–1320.
PMLR, 2015.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert,
Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur
Guez, Edward Lockhart, Demis Hassabis, Thore Graepel,
et al. Mastering atari, go, chess and shogi by planning with
a learned model. Nature, 588(7839):604–609, 2020.

Younggyo Seo, Kimin Lee, Stephen L James, and Pieter
Abbeel. Reinforcement learning with action-free pre-
training from videos. In International Conference on Ma-
chine Learning, pages 19561–19579. PMLR, 2022.

Nur Muhammad Mahi Shafiullah, Zichen Jeff Cui, Ariun-
tuya Altanzaya, and Lerrel Pinto. Behavior transform-
ers: Cloning k modes with one stone. arXiv preprint
arXiv:2206.11251, 2022.

Jinghuan Shang, Kumara Kahatapitiya, Xiang Li, and
Michael S Ryoo. Starformer: Transformer with state-
action-reward representations for visual reinforcement
learning. In European Conference on Computer Vision,
pages 462–479. Springer, 2022.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche, Julian Schrit-
twieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neu-
ral networks and tree search. nature, 529(7587):484–489,
2016.

Samarth Sinha, Homanga Bharadhwaj, Aravind Srinivas, and
Animesh Garg. D2rl: Deep dense architectures in re-

inforcement learning. arXiv preprint arXiv:2010.09163,
2020.

Jiankai Sun, De-An Huang, Bo Lu, Yun-Hui Liu, Bolei Zhou,
and Animesh Garg. Plate: Visually-grounded planning
with transformers in procedural tasks. IEEE Robotics and
Automation Letters, 7(2):4924–4930, 2022.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Mar-
ian Czarnecki, Vinicius Zambaldi, Max Jaderberg, Marc
Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al.
Value-decomposition networks for cooperative multi-agent
learning. arXiv preprint arXiv:1706.05296, 2017.

Yujin Tang and David Ha. The sensory neuron as a trans-
former: Permutation-invariant neural networks for rein-
forcement learning. Advances in Neural Information Pro-
cessing Systems, 34:22574–22587, 2021.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler.
Efficient transformers: A survey. ACM Computing Sur-
veys, 55(6):1–28, 2022.

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hes-
sel, Nicolas Sonnerat, and Joseph Modayil. Deep rein-
forcement learning and the deadly triad. arXiv preprint
arXiv:1812.02648, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

Adam R Villaflor, Zhe Huang, Swapnil Pande, John M Dolan,
and Jeff Schneider. Addressing optimism bias in sequence
modeling for reinforcement learning. In International
Conference on Machine Learning, pages 22270–22283.
PMLR, 2022.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki,
Michaël Mathieu, Andrew Dudzik, Junyoung Chung,
David H Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature,
575(7782):350–354, 2019.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc
Lanctot, and Nando Freitas. Dueling network architectures
for deep reinforcement learning. In International con-
ference on machine learning, pages 1995–2003. PMLR,
2016.

Kerong Wang, Hanye Zhao, Xufang Luo, Kan Ren,
Weinan Zhang, and Dongsheng Li. Bootstrapped trans-
former for offline reinforcement learning. arXiv preprint
arXiv:2206.08569, 2022.

Muning Wen, Jakub Grudzien Kuba, Runji Lin, Weinan
Zhang, Ying Wen, Jun Wang, and Yaodong Yang. Multi-
agent reinforcement learning is a sequence modeling prob-
lem. arXiv preprint arXiv:2205.14953, 2022.

Zhihui Xie, Zichuan Lin, Junyou Li, Shuai Li, and Deheng
Ye. Pretraining in deep reinforcement learning: A survey.
arXiv preprint arXiv:2211.03959, 2022.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding
Zhao, Joshua Tenenbaum, and Chuang Gan. Prompting



decision transformer for few-shot policy generalization.
In International Conference on Machine Learning, pages
24631–24645. PMLR, 2022.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez.
Q-learning decision transformer: Leveraging dynamic pro-
gramming for conditional sequence modelling in offline rl.
arXiv preprint arXiv:2209.03993, 2022.

Mengjiao Yang, Dale Schuurmans, Pieter Abbeel, and Ofir
Nachum. Dichotomy of control: Separating what you
can control from what you cannot. arXiv preprint
arXiv:2210.13435, 2022.

Deheng Ye, Guibin Chen, Wen Zhang, Sheng Chen, Bo Yuan,
Bo Liu, Jia Chen, Zhao Liu, Fuhao Qiu, Hongsheng Yu,
et al. Towards playing full moba games with deep rein-
forcement learning. Advances in Neural Information Pro-
cessing Systems, 33:621–632, 2020.

Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao
Wu, Hongsheng Yu, Shaojie Yang, Xipeng Wu, Qingwei
Guo, et al. Mastering complex control in moba games with
deep reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages
6672–6679, 2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexan-
dre Bayen, and Yi Wu. The surprising effectiveness of
ppo in cooperative, multi-agent games. arXiv preprint
arXiv:2103.01955, 2021.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Ra-
jeswaran, Sergey Levine, and Chelsea Finn. Combo:
Conservative offline model-based policy optimization.
Advances in neural information processing systems,
34:28954–28967, 2021.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor
Bapst, Yujia Li, Igor Babuschkin, Karl Tuyls, David Re-
ichert, Timothy Lillicrap, Edward Lockhart, et al. Deep
reinforcement learning with relational inductive biases.
In International conference on learning representations,
2018.

Vinicius Zambaldi, David Raposo, Adam Santoro, Victor
Bapst, Yujia Li, Igor Babuschkin, Karl Tuyls, David Re-
ichert, Timothy Lillicrap, Edward Lockhart, et al. Re-
lational deep reinforcement learning. arXiv preprint
arXiv:1806.01830, 2018.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online deci-
sion transformer. arXiv preprint arXiv:2202.05607, 2022.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang,
Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Be-
yond efficient transformer for long sequence time-series
forecasting. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 35, pages 11106–11115, 2021.


	1 Introduction
	2 Problem Scope
	2.1 Reinforcement Learning
	2.2 Transformers
	2.3 Combination of Transformers and RL

	3 Network Architecture in RL
	3.1 Architectures for function approximators
	3.2 Challenges

	4 Transformers in RL
	4.1 Transformers for representation learning
	Encoder for local per-timestep sequence
	Encoder for temporal sequence

	4.2 Transformers for model learning
	4.3 Transformers for sequential decision-making
	Transformers as a milestone for offline RL
	Different choices of conditioning
	Improving the structure of Transformers
	Extending DT beyond offline RL

	4.4 Transformers for generalist agents
	Generalize to multiple tasks
	Generalize to multiple domains


	5 Summary and Future Perspectives

